p-group, non-abelian, nilpotent (class 5), monomial
Aliases: C42.4D4, 2- 1+4.C4, C2.11C2≀C4, (C2×Q8).2D4, C4.10D4.C4, C4⋊Q8.1C22, C4.6Q16⋊1C2, C42.3C4⋊4C2, D4.10D4.1C2, C22.4(C23⋊C4), (C2×Q8).2(C2×C4), (C2×C4).8(C22⋊C4), SmallGroup(128,137)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C2×C4 — C4⋊Q8 — C42.4D4 |
Generators and relations for C42.4D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=a-1b2, ab=ba, cac-1=a-1b, ad=da, cbc-1=a2b, dbd-1=a2b-1, dcd-1=a-1c3 >
Character table of C42.4D4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | |
size | 1 | 1 | 2 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | -i | i | i | -i | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | i | -i | -i | i | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ12 | 4 | 4 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ13 | 4 | 4 | -4 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ14 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ15 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ16 | 4 | -4 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | complex faithful |
(1 5)(2 13 6 9)(3 7)(4 11 8 15)(10 14)(12 16)
(1 16 5 12)(2 9 6 13)(3 14 7 10)(4 15 8 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 15 13 4 6 11 9 8)(3 14)(7 10)(12 16)
G:=sub<Sym(16)| (1,5)(2,13,6,9)(3,7)(4,11,8,15)(10,14)(12,16), (1,16,5,12)(2,9,6,13)(3,14,7,10)(4,15,8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,15,13,4,6,11,9,8)(3,14)(7,10)(12,16)>;
G:=Group( (1,5)(2,13,6,9)(3,7)(4,11,8,15)(10,14)(12,16), (1,16,5,12)(2,9,6,13)(3,14,7,10)(4,15,8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,15,13,4,6,11,9,8)(3,14)(7,10)(12,16) );
G=PermutationGroup([[(1,5),(2,13,6,9),(3,7),(4,11,8,15),(10,14),(12,16)], [(1,16,5,12),(2,9,6,13),(3,14,7,10),(4,15,8,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,15,13,4,6,11,9,8),(3,14),(7,10),(12,16)]])
G:=TransitiveGroup(16,361);
Matrix representation of C42.4D4 ►in GL4(𝔽3) generated by
2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 0 | 2 |
0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 2 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 2 | 2 | 0 |
2 | 0 | 0 | 0 |
0 | 2 | 2 | 0 |
0 | 1 | 2 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(3))| [2,0,0,0,0,0,1,0,0,2,0,0,0,0,0,2],[0,0,0,1,0,0,2,0,0,1,0,0,2,0,0,0],[0,0,1,0,2,0,0,2,1,0,0,2,0,1,0,0],[2,0,0,0,0,2,1,0,0,2,2,0,0,0,0,1] >;
C42.4D4 in GAP, Magma, Sage, TeX
C_4^2._4D_4
% in TeX
G:=Group("C4^2.4D4");
// GroupNames label
G:=SmallGroup(128,137);
// by ID
G=gap.SmallGroup(128,137);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,723,352,346,745,248,1684,1411,718,375,172,4037,2028]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^-1*b^2,a*b=b*a,c*a*c^-1=a^-1*b,a*d=d*a,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^-1*c^3>;
// generators/relations
Export
Subgroup lattice of C42.4D4 in TeX
Character table of C42.4D4 in TeX